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Abstract

An explicit, analytical model is presented of finite amplitude waves in
shallow water. The waves in question have two independent spatial periods, in
two independent horizontal directions. Both short-crested and long-crested
waves are available from the model. 'Every wave pattern is an exact solution
of the Kadomtsev-Petviashvili equafion. and is based on a Riemann theta
function of genus 2. These bi-periodic waves are direct generalizations of
the well-known (simpiy periodic) cnoidal waves. Just as cnoidal waves are
often used as one-~dimensional models of'"typical"’ﬁonlinear. periodic waves in
shallow water, these bi-periodic waves may be considered to represent
"typical" nonlinear, periodic waves in shallow water without the assumption of

one-dimensionality.
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1. Introduction ; w- l

In their 1895 paper, Korteweg and deVries showed that in the absence of

dissipation, the evolution of unidirectional, long water waves of moderate
amplitude is governed approximately by an equation equivalent to

£, + 61‘15‘x + f

xxx =0 - (1.1

This has become the standard form for the Korteweg-deVries (KdV) equation.

-
They also discovered periodic solutions of (1.1) in the form -4
2,2 . 2
£(x,t) = 0k en® [o(x - et + x,); k] + #, , (1.2)
which they called "cnoidal waves". In (1.2), cnly; k] is a Jacobian elliptic = o
function with modulus k (0 < k < 1), the wave speed (c) is given by j
c-6f°-ll02 (1 -2k2) ’ (1.3a)

and the wavelength (L) is given by

oL = 2 K(k) , (1.3b)
o
where K(k) is the complete elliptic integral of the first kind (ef. Byrd & \
Friedman, 1971). Because (1.1) is invariant under a Galilean transformation el

(t =1, x = x.- 6 at, f(x, t) Qv(x,t) + a), we may normalize {ts periodic j.:f:f-_-‘

solutions by requiring -
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Then in (‘_|.2).
g2 | E(k) _ 2
fo - =20 [K(k 1 + Kk ] ’ (1-5)

where E(k) is the complete elliptic integral of the second kind.

Two views of cnoidal waves are popular. Mathematicians tend to regard
the KdV equation as a prototype of an infinite dimensional Hamiltonian system
that is completely integrable. (For the analysis of (1. 1) with periodic
E boundary conditions, see Zabusky & Kruskal (1965). Novikov (1974),
' Dubrovin & Novikov (1974), Dubrovin (1975), Lax (1975), Its & Matveev (1975),
Flaschka (1975), McKean & van Moerbeke (1975), McKean & Trubowitz (1976).) Of
part.icular. importance is an 1nf1nife dimensional family oi’ eiact.
spatially-periodic solutions of (1.1), all of which have the form

£(x,t) = 202 10 0(4ys-e0rty) (1.6)

where 03 - qu + ujt + ‘Jo' and © is a Riemann theta function of genus N. One
may think of these "genus N" solutions of (‘I 1) as the periodic analogues of
its N-soliton solutions, which can be obtained from (1 6) in an appropriate

limit. In the simplest case, where N = 1. the solut.ion in (1.6) is identical
with that in (1.2).

Ocean engineers often adopt a different viewpoint that was popularized by
Hiegel (1960) From this perspective, cnoidal waves are important not as
particular solutlons of a partial differential equation, but rather as
one~dimensional, analytical models of "typical" nonlinear, periodic waves in
shallow water. (In this paper, we use "shallow-water wave" in the following

sense. Given a gravity wave with amplitude ¢, and wavelength L, propagating
in water of depth h, its Ursell number is

U - g, L2m3 . (1.7a)
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We call the wave a shallow-water wave if

Ue=o00) ; (‘!.7b)

see Sarpkaya &lIsaacson (1981, p.215) for a detailed discussion of (1.7b). The
well-known Stokes expansion of water waves requires U << 1, and becomes
invalid in the shallow water regime of interest here.)

The practical value of this second perspective is undeniable. Jacobian
elliptic functions are well-documented analytic functions, so it:. is fairly
easy to calculate "typical" values of wave speeds, forces, mass transport,
etc. for engineering purposes. Cnoidal wave theory assumes that wave
ampiitudes are not too large, 'but the theory has been generalized by
Laitone (1961) and others to include higher order nonlinear effects. Sarpkaya
& Isaacsbn'(1981) summarize these generalizations, and give 'a concise

description of cnoidal wave theory as a practical engineering tool.

One of the major shortcomings of cnoidal wave theory as a practical model
of shallow-water waves is that the theory is one-dimensional, whereas the
water surface is two-dimensional. It follows that cnoidal waves are
necessarily long-crested, whereas 'both long-crested and short-crested waves
are observed in shallow water.

The objective of this paper 1is ¢to describe a two-dimensional
generalization of cnoidal waves. The waves to be described are periodic in
two independent directions on the' water surface, and they are proposed here as
models of two-dimensional, periodic waves of finite amplitude in shallow
water. (There is always a semantic confusion about counting dimensions in
these' problems. Cnoidal waves have two-dimensional velocity fields and
one-dimensional. surface patterns; in this paper, we call cnoidal waves
one-dimensional. The waves of interest here have three-dimensional velocity
fields, and tw&dimensional surface patterns; we call them two-dimensional.)
To give the reader some notion of what this model actually is and in whét
sense it generalizes the cnoidal wave, we now list some of its main features.
This list should be interpreted as a series of claims, which will be verified
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o in the body of the paper.

a) Just as the Kdv equétion describes the evolution of long water waves of
finite amplitude if they are strictly one-dimensional, the KP equation,

(1't + 61, + rxxx)x +3f, =0 , (1.8)

describes their evolution if they are weakly two-dimensional (Kadomtsev &
Petviashvili, 1970). The evolution described by (1.8) is weakly
nonlinear, ueékly dispersive, weakly two-dimensional, .a'md all three
effects are permitted to enter at the same order.

b) Both the KdV and KP equations are Galilean lnvar'iant. so their periodic
solutions may be normalized by imposing a condition like (1.4).

c) Like the KdV equation, the KP equation admits an 1nf1ni£e-dimensiona1
family of exact solutions in the form

fix,y,t) =202 ;e (1.9)

where © is a Riemann theta function of genus N. If N=1, these
solutions are simply cnoidal waves. ' .

d) The waves of interest in this péper appear at N = 2. Then the KP
equation admits solutions in the form (1.9) that are'periodic in two
independent horizontal directions. Examplhes of these two-dimensional
waveforms are shown in Figures 2 énd 3. In this paper, we will refer to
these waves as "bi-periodic," or as "KP solutions of genus 2." (To avoid
confusion we emphasize that our bi-periodic waves have two fe_gl_ periods.
They should not be confused with ordinary elliptic functions, which have
two complex periods but only one real period.)

e) The cnoidal wave in (1.2) is stationary if ‘one travels with the speed
defined by (1.3). The KP solutions of genus 2 that are of interest here
also are statidnary if one travels with the correct (constant) velocity.
In both cases, there is only one wave pattern for all time. For cnoidai

waves the surface pattern is one~dimensional; for bi-periodic waves it
is two-dimensional. T
f) The cnoidal waves in (1.2) have three arbitrary parameters (k,o0,x,), of ‘




.

which two (k,0) have dynamical significance. These two parameters can be
determined uniquely from two appropriate meésurements of the wave. The
bi-periodic waves have eight arbitrary parameters, of which aii have
dynamical significance. We will show how these s8ix parameters can be
determined directly frém a few measurements of the wave.

g) The derivations that lead to both the KdV and KP equaiions assume that
the waves in question are too small to break. Neither equation ever
predicts breaking wa\ves, but either equation may' predict waves of large
amplitude that may break according to some other criterion.

The organization of this paper is as follows. In §2 is a brief
derivation of the KP equation from the equations for inviscid water waves. KP
solutions of genus 1 (cnoidal waves) are reviewed in §3. The KP solutions of

genus 2 are the main concern of this paper, and these are described in detail
in §4. How to use these solutions as models of bi-periodic waves in shallow
water is described in §5.
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2. Physical meaning of the KP equation

The KP equation is a two-dimensional generalization of the KdV equation,
and its derivation as an approximate model for water waves follows closely
that of the KdV equation. Because the derivation has been given elsewhere
(e.g., Ablowitz & Segur, 1979), we merely review the main points here.

In the simplest case, we seek the irrotational motion of an inviscid,
incompressible, homogeneous fluid, subject to a constant (vertical)
gravitational force, g. We employ Cartesian coordinates (x,n,E) in which ¢
increases upward. The fluid rests on a horizontal, impermeable bed at § = -h
and has a free surface at £ = g(x,n,t). Because the motion is irrotational by
assumption, there is a velocity potential & that satisfies

v = 0, -h < £ < glx,m,1) . (2.1)
It is subject to boundary conditions on the bottom (E = -h),

3£¢ =0 , (2.2a)

and along the free surface (£ = z(x,n,1)),

D
—.c

= + ¢ + 90

Dt T XX ﬂcn-o

e (2.2b)

1
¢, + gL+ E-|Vo|2 =0 . (2.2¢)

In this discussion, we are interested in spatially periodic solutions of
(2.1), (2.2), and we require

L
Lim / dxt (X * Xg» MT ) =0 , (2.3)
o

L » =

This is a normalization of g, corresponding to (1.4). It implies that h is the

mean fluid depth, and that { = 0 in the absence of any motion.
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Let ¥ = (%,m) be a representative horizontal wave number for the waves in
question, with «? = £2 + m?, Orient the horizontal coordinates so that the

x-direction is the principal direction of wave propagation. To derive the KP
equations from (2.1) and (2.2), we make four assumptions.

(A) Wave amplitudes are small:

LI
h

144 j .
(Bi The water is -shallow relative to typical horizontal wavelengths:
(«n)2 << 1 .
(C) The waves are nearly one-dimensional:
(m/2)% << 1 .
(D) These three small effects all have comparable influence:
(m/2)2 = O[(xh)?] = O(e) .
When these assumptions are used to re-scale the original equations

systematically, the result at 1leading order is a one-dimensional wave
equation. It follows that the surface displacement is given by

t{xyn,1) = €h [ f (x - JEH T;n.T) + F(x + JEH T;n.r)] + O(ezh)

where f and F are known in terms of initial data, and each varies slowly in
its last two variables. The expansion procedure can be implemented in terms of
the following scaled, dimensionless variables,

X = 51/2(x - (gh)1/21)/h, X = 51/2(x + (gh)1/21]/h, (2.43)




y = en/h, t = €372(gn) 1 2¢/6n }

Then we look for solutions of (2.1), (2.2) of the form

s TaTx e e T

z -gg—h—[f(x.y.t) + F(?,y.t)] ’ (2.4p)

etc. Secular terms arise at second-order in this expansion unless the

"right-going" waves satisfy the KP equation,

»
]
i (g, + 68 £, « £, ), 3fyy = 0 , (1.8)
- and the "left-going" waves satisfy an equivalent equation. To make the model
i quite explicit, we also write the KP equation for the right-going waves in its

dimensional form for g(x,n,1):
( h)-1/2 . ,ii +ﬁ +1—¢ -0 (2.5)
BT e T E T2 S T e fxxx|y T2 Fan '

The components of fluid velocity in the (x,n,§) directions are, for
g -h S £ s t(x,n, 1),

u - (g/h)1/2 T (2.6a)
¥ v - em)?2f* axap (2.6b)
> v~ -e/m'2m s 0o - (2.60)

Note that only the vertical component of velocity (w) has any vertical

structure at leading order. To the same order of approximation, the fluid

p_ pressure below the free surface is simply hydrostatic:
- p ~ pg(g - £) . (2.6d)
i




Some comments about this derivation of the KP equation:

b (1) Surface tension was omitted for simplicity.. The effect of including it
is to change the numerical coefficient of (;xxxx) in (2.’5)- For water
'-}.. beneath air, this change is negligible if the water depth exceeds a few
centimeters. If the water depth is less than about 1/2 cm, however,
- this coetficient changes sign and this changes ihe qualitative
F character of the solution of the KP equation. We recommend caution
when using the model described here for periodic' waves on thin films of
liquid.

(11) This derivation neglects dissipation, which is assumed to be even
weaker than the weak nonlinearity, weak dispersion and weak

two~dimensionality inzluded in the KP equation.

(i1i) The assumption that the motion is irrotational is convenient but no!
necessary, as shown by Benney (1966).

(iv) The original equations (2.1, 2.2) are invariant under a horizonta.
rotation of coordinates. Thié symmetry is broken in choosing the
x-direction as the principal direction of wave propagation. Even 8o,
the KP equation retains a remnant of this symmetry; (1.8) is invariant

under transformations of the form:

x+x*cy-3uzt. Oy * 3y
y+*y- 6bat, a, - ay * ady, (2.7
tst, 3 + 3, - 6ad, - 3a%3, .

We will refer to these transformations loosely as "rotations," but we
emphasize that this symmetry group only approximates actual rotations

in the physical (x,n) plane, and only if |ax| >» |2

nl

Thus, the KP equation admits waves that travel in arbitrary directions

e 4oty 4. r"v .
WA AN

in the (x,y) plane, but we can expect them to model water waves g
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accurately only if they propagate primarily in the x-direction.

(v) The KP equation also exhibits a scaling symmetry.
x + BX, t » 83, y+ 8%, f+87%f . (2.8)

This symmetry is inherited from the arbitrariness of the small

parameter (e¢) in (2.4). The symmetry parameters, (a,8), are two of the
six parameters avajlable in the model of doubly periodic waves in
shallow water.

e e XX 3 A2

(vi) We mentioned below (2.3) that (2.3) defines h uniquely. Because of
(2.6a), (2.3) also identifies the laboratory coordinate system (i.e.,

. c . .
Xon,E,1). Integrating (2.3) overf dt shows that the mean horizontal

‘frrfv“-

motion vanishes in the x-direction, so there is no net mass transport
in that direction in the laboratory frame.

.
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“h 3. KP solutions of genus 1 - cnoidal waves

Cnoidal waves have been discussed at 1length elsewhere. (For a
hydrodynamic emphasis, see Wiegel, 1960 or Sarpkaya & Isaccson, i981; for a
mathematical emphasis, see Dubrovin, i981 or Boyd, 1982.) We review them here
because the bi-periodic waves are diréct.generalizat".ions‘ of cnoidal waves.

3.1 Construction of KP solutions of genus 1

Real-valued KP solutions of genus 1 are constructed as follows. The
phase variable is

= uX + vy + wt + ¢, , (3.1a)
or o

¢ = u(x+py-ct) +¢, ; (3.1b)

¢ 1s required to be real. A theta function of genus 1 is defined by a Fourier
series:

0 (¢3b) = Z exp(-;- bn + in ¢) (372)

N=-o

© is both convergent and real-valued for all real ¢ if b is a negative real

number, which we now require. (Differences in notation are always a nuisance. 1
© (¢) and b are called 03 (¢/2) and (2wit), respectively, by Whittaker and )
Watson, 1927.) Krichever (1976) showed that the KP equation (1.8) has

L
T
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solutions of the form
? (x,y,t) = 23,° In © (¢;d) (3.3)

provided c is a particular function of (u, p, b). Standard identities for
elliptic functions (cf. Byrd and Friedman, 1971) show that (3.3) 1s

equivalent to
2
r.z(——)—“x(:) [kz an(mk)+1-k2-§§—:;] ’ (3.4a)

v k() (0 - t) ’ (3.4b)

b = -27K [1 - k]”z /K(k) : (3.4c)

If p =0 in (3. 1). then (3.4) is identical with (1 2) and (1 5), the
formulae for a cnoidal wave solutlon of the Kdv equation. Its speed is given
by (1 3a) with o = uK(k)/w. For p # 0, we may use (2.7) with a = p to rotate
this KdV solution {nto the general real-valued KP solution of genus 1. with
the following properties.

i) There are four'arbitrary real parameters in the solution: (u, p, ¢g) in
(3.1), and b (b < 0) in (3.2). Of these, u represents the scaling
symmetry in (2.8), p represenis the rotational symmetry in (2.7), and
¢, represents the translational symmetry of any of the independent
variables in (1.8). There is no dynamical significance to ¢,.

i1) Given these parameters, k is uniquely determined by (3.4c), the waveform
is given by (3.3) or (3.4a), and the speed parameter is given by

L a2 f 2uK(k) V2 | o E(K) _ 2
c = 3p ( - ) [ 3 XG0 2 + k ] . (3.5)

An equivalent expression for the speed in terms of (u, p, D) was given
by Dubrovin (1981).

iii) The wavelength, direction of propagation and total speed all follow from
{3.1) and elementary geometric considerations. A typical cnoidal wave

is shown in Figure 1.

12
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Instead of (3.2), we may also write

© (¢; b) -(E—:)NZ Z. exp[%(%- mn)z] . (3.6)

This representation follows from an identity known as the "Poisson sum
formula,"

+®

Zw (n2s + 2niz) - (_ 18_)1/22;9“ [(z - mn )%] . (3.7)

which is valid for Re(s) < 0 (Whittaker & Watson, 1927, p. 476). For any
b <0, it follows from (3.6) that the two terms corresponding to m = 0 and
m = +1 are larger than any others in the neighborhood of ¢ = n. If b + 0, then
in this region these two terms are even dominant in an asymptotic sense.
[Similarly, the terms corresponding to M and (M + 1) dominate in the
neighborhood of ¢ = (2M+1)m. Thus each pair of terms in (3.6) dominates over
exactly one period of © (@).j Retaining only the terms corresponding tom =0,
1 in (3.6) and substituting into (3.3) yields the expression for single KP
soliton riding on a depressed mean level (at 2u2/b):

flxy,t)” 255 1“[? + exp {%M - 1T)}]+ 2u2/v

2 2
- 2(1;5) sechz[%(q: - n)]+ 2§ . (3.8)

This is correct asymptotically if b + o with (u/b) finite. It follows that the
cnoidal wave can be viewed as a superposition of overlapping solitary waves,

placed one period apart. This view has been discussed at length by Boyd
(1982).

13
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3.2 Reconstructing a cnoidal wave from simple measurements

In order to use the KP solutions of genus 1 as models of periodic waves
in shallow water, one must be able to infer' the parameters (u, p, b) from
measurements of the wave. This can be done in a variety of ways, one of which
is outlined here.

The cnoidal waves have a simple characterization.
i) A cnoidal wave is real-valued and bounded, for all real (x, y, t).

ii) 1t is one-dimensional; i.e., there 1is a single phase vér'iable
) 1nf3.1)], which is linear in (x, y, t). There is no variation
along thé.uave crests (i.e., along ¢ = const).. In the terminology of
oceanography, cnoidal wa\}eé are long-cr'ested.'

1i1) A cnoidal wave is periodic (in ¢). '

iv) There is a uniformly translating c.oordinate system in which the cnoidal
wave is stationary.

Cnoidal waves are the onl)" KP solutions with these four properties.

Given a shallow-water wave with these four properties, one can determine
the parameters of the corresponding cnoidal wave in three steps, as follows.
a) Depending on the problem, one may or may not be able to orient f.he
X - axis in the direction of wave propagation. If so, then p = 0 in
(3.1) and in (3.5). If not, then p measures the angle between these
two. direct.ions;. one can expect discrepancies between the cnoidal wave
model and the water wave if p is large. In any case, p can be measured
directly from the wave pattern. .
b) Once p is known, u is determinéd from p and L, the wavelength in the
direction of wave propagation:

= 21:[1.2 (1 + 92) ] -1/2 . (3-_9)

c) Given u and p, b can be determined from the wave amplitude or from the
speed, either of which can be measured directly. Here we focus on the
speed. Suppose u, p and ¢ have been determined by direct measurement.
From (3.5), define

14
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2 2
c - 3p (ZK(k)) E(k) , 5 . 2
L - - - - k - -10
m e 2 » 3 %00 - (3.10)
One can prove that Y is a monotonic function of k, and also of b.

; Therefore, b is determined from ¥. Simple approximations are obtained
" by expanding (3.4c) and (3.10) for k »+ 1 and for k + 0. The results are
as follows., As b + - » (k + 0),

v --1+20e0. (3.11a)

Asb-+0(k+1),

a [2\2 3b
X (5 (5).

For - » < b < 0,

2
-1 + 24ed ¢ ¥ <(%1) (1 + é—g) . (3.11¢)
) , R :

Moreover, one may approximate ¥ by (3.11a) for b < - 4.6, and by (3.10b)
for b > - 4.6, with an error that never exceeds 1%. This is adequate
for comparisons with most experimental data.

15
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4, KP solutions of genus 2

The KP solutions of primary interest in this paper have genus 2., They are
two-dimensional generalizations of cnojidal waves. Aspects of these solutions
have been considered by Krichever (1976), Nakamura (1979), Krichever and
Novikov (1980), and Dubrovin (1981). Related work by Hirota and Ito (1981),
Bryant (1982), and Finkel and Segur' (1984) is also of interest. The work of
Dubrovin (1981) is particularly important from our perspective.

4.1 Construction of theta functions of genus 2

The construction of real-valued,nonvanishing theta functions of genus 2
requires a certain amount of machinery, which we now introduce. The first
ingredient is a two-component vector of phase variables, 3 - (01. OZ)T. where

’J = UgX * vy ¢ th * 050 0 J=12 , (4.1a)

= Uy (x + pyy = cJt) * 050 o Je1,2 . (4.1b)

Both components are required to be real. To change these variables into those

of Dubrovin, let By 1UJ. vy * 1vj. wy * “UiW,, § = 1,2 .

The second ingredient is a real-valued Riemann matrix: a 2x2, symmetric

matrix that is real-valued and negative definite. Let

%11 b2
B~ .- . (4.2a)
b2 b2
be real-valued. P is negative definite if
2

le6

.
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A theta function of genus 2 is defined by a double Fourier series:

e(¢1.¢2.8)-i 2exp{;—ﬁ-ﬁoﬁ+1ﬁ-3}. (4.3)

m1 == mzn-ﬂ

where

Ty v

PR S 2
W R memy byt 2mymp by tmp by

<>
Bedem o tmye .

Clearly © is real-valued. It converges uniformly in ¢1» ¢, because of
(4.2b). It is perjodic in ¢y when ¢, is held fixed, and vice-versa (i.e., it
is‘quaéi-periodic). We show In § 4.3 that © does not vanish.

This description needs further refinement for two reasons. First, two

different Riemann matrices can be equivalent, in the sense that ihey generate
the same theta function. For example, let

b bA b b(A+1)
E‘l = > ’ BZ = 2 ’
bA bA + d b(A+1)  b(A+1)€ + a

If b and d are both negative and A is real, then By and B, are both Riemann
matrices. Let

6o« {m.omp), A= [(m +mp), mp] .

One shows by direct computation that

5.52.6.3.31.6'




Then it follows (by renumbering in (4.3)) that B, and @, produce the same
theta function, and are equivalent. Any two equivalent Riemann matrices can
be related to each other by a symplectic transformation (see Dubrovin, 1981,
for details). -

To eliminate this ambiguity, Finkel and Segur (1984) introduce the idea
of a basic Riemann matrix.
Definition: A real-valued, 2x2 Riemann matrix is said to be basic if

- -1 sl j=1,2 (4.4)
k 2 J 2' .! 12 A4

where AJ - b12/ij . They also prove the following results:

1) Every real-valued, 2x2 Riemann matrix is equivalent to a basic Riemann
matrix.
ii) Two basic Riemann matrices are equivalent only if their A's coincide.

It follows that every real theta function of genus 2 can be generated from a
basic Riemann matrix. Henceforth, we consider only basic Riemann matrices,
since any other real ﬁiemann matrix can be reduced to its basic form via an
algorithm given by Finkel & Segur (1984).

Basic Riemann matrices have a natural representation as follows. Define

- \
b max (b11. b22/

."-'. {

d=det B /b . (4.5)

. .
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Then every basic Riemann matrix takes one of two forms

2

b b bAZ+d b
a1 - or az ™ . (“.63)
b, bAled BA b
With
1
bco, 52, dsn(1-2) . (4.6b)

The relation between these two forms is

© (9, ¢ 51) =0 (00 03 B2) - (4.6¢)
For definiteness, we will always use J; unless otherwise noted.

The second difficulty with (4.3) is that it admits degenerate cases. A
2x2 Riemann matrix is called decomposable it is is equivalent to a diagonal
matrix, and indecomposable otherwise. For example, in (4.2) B is decomposable

if by, = 0. In this case © in (4.3) becomes a product of two theta functions
of .genus 1. Dubrovin (1981) shows that theta functions of genus 2 generate
nontriviai KP solutions if and only if they are indecomposable. He also gives
an explicit test for decomposability, which requires the evaluation of a 4x4
determinant. A simpler test is given by the following Theorem (Finkel and
Segur, 1984): Let B be a basic Riemann matrix, as in (4.6). Then B is
decomposable if and only if A = 0.

Summarx:

Let (b, d, A) be three real parameters satisfying (4.6b), with A # O.
These parameters generate a basic Riemann matrix in the form (4.6a). Every
real, 2x2, indecomposable Riemann matrix is equivalent to a basic Riemann
matrix. Basic Riemann matrices with A # O generate real-valued, indecomposable
theta functions. These can be written in the form
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......
-----
- ' .




-~ —
- o
- PR\t e Jaate .
R - -
- v
P it T

. e(°1'°233 - exp{ 3 2 N
: ) Z p{Ed mZ} Z exp ‘-12- b(m1 + Amz)z} cos{mw, +m ¢}

Nam—0
2 Il, L had
(4.7)

o7
2

-
3
)T
g
Y]
@
D
-'.
bt
o
W
-’
e
- ®
Ve
( -
- 20 .
»
— .
: .
-t |
‘.~ o.‘-.
" ..-‘
‘ R
~ et .
e =
e e .
NN v e R
A b PO SeaTe T NN
PP LIS AN
L\LL"....‘.. N :
o' - - - ® A
RENCAGREAT) WA ;
N AR " =
o RO A o
EAT WY RN : :
. . .. - i * :
PRI S WAL VALY R ST R -
EWRE WA AT N
PURDAPN v N S
R IO ~
adon e




4.2 Construction of KP solutions of genus 2

Given an indecomposable theta function of genus 2, KP solutions are
constructed in the usual way:

f(x.y.t) = 2 3,2( Ln © (¢1.02. B ) . . (u.s)

Dubrovin (1981) proves that f(x,y,t) actually satisfies the KP equation,
provided that its parameters satisfy certain relations. To express these
relations, we need two more concepts: theta-constants, and two more phase

variables.
Let P be a two component vector, which can take on one of four values:
B (pz) - (o)'('o s\wz) \w2 ) (4.9)

Every Riemann matrix generates a four-component theta constant of the form

031- X ew | (5+3) -p-(8+8)],

m1 =l=0 - -® (4.10a)

where @ = (my,m,), and the product is defined below (4.3). If B is in basic
form (for definiteness, B, in (4.6a)) then this can be written as I

8[5].2 exp)d(mz + p2)2 Z exp’b (m1 + p? + A (mp o+ pz))2 ' L

) m, o, (4.10b)

Obviously, © [p] is differentiable with respect to (b, d and A), and each of
these derivatives is a 4-component vector indexed by 3 Define

Gy = ¢ = Aey 03 = ¢, X ¢y (4.11a) x
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where

o2 _ b
b2 pA2 + d

(4.11b)

I We show in § 4.3 that the wave crests lie on ¢3 = const and on ¢y = const. The
corresponding wave numbers are

- R R R TR A (4.11¢)
- N -
]
with similar definitions for (v3, w3, vy, wy).
Now we may state the main Theorem (Dubrovin, 1981): Let B be a real,
L indecomposable Riemann matrix; 1i.e., satisfying (4.6) with A # O. Then a
function of the form (4.8) solves the KP equation (1.8) if and only if {ts
parameters are related by the four equations, indexed by 3, in (4.12).
- yx-uss? , (4.12)
|
_'@ where
I - My W * 3\% u‘,'
- My owy t oy eyt 6y oy L L ™ -
by wy * 303 . 63 w2 |
4 ~
. D by, uz !
’ i .
) = 9
- T
. ~ “ - ~ . _‘..
g (u - 3, 8lB). 3o 3, elB1, 34 eLBl, e[BJ) . 5
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L
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§- (af, ol31, ab(-z'—b 3,) 8 [B1, 3, 3y OLB1. 3y (2‘—b % ) erB). 3 8).

and D is a constant of integration with no physical significance. Y is

invertible if and only if B is indecomposable, so (4.12) always can be solved
for R.

After Y is inverted in (4.12), the first and third of the resulting
equations can be written as

2 ' 4

- 2 2
ya-LT30 w3V
1 ’ ) ° - 1 1 (uo13a)

2 2

ey -~ 30p My wy *+ 3 v My \ X M

v, » - — e ".(—‘) Pu(-—"-;u) (4.13b)
2 4 o
vy Hy

Here P,(z;h) and Py (z;4) are well-defined polynomials of degree 4. Then
eliminating (D, wy, wy) from (4.12) yields one more relation,

2 u
(u, vy < u,m) - u? P (ﬁ H 6) ' (4.13¢c)

where P(z;6) is a well-defined polynomial of degree 6. The resulting solution
will be real-valued if uu/u1 is chosen so that

P (u,,/u1; 6)z0 . (4.13d)

To summarize, (4.8) provides a real-valued solution of the KP equation,
(1.8), whenever: (i) B is indecomposable (i.e., A # 0 in (4.6)); and (ii)
(4.13) is satisfied. There are no other constraints.
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The conditions in (4.13) can be interpreted in terms of the wave pattern
as follows:

(1) According to (4.11c),

2 2

= (u3 Vo < U v3) . ("-'_“‘)

2
(”1 "2‘"2"1) - ("1 "u'“u‘H)

! (11, If uwy v, = ¥y vy , then at any fixed t, ¢; = constant and ¢, = constant

t; on parallel lines in the (x,y)-plane. Using (2.7), such a solution can be
f "rotated"™ so that Vi ® vy = 0; 1.e.; these are actually KdV solutions of
genus 2. According to (4.13c) and (4.14), vy = uyv;  wherever
P (u“/u1;6) = 0. In this way.- every 1ndecombosab1e "2x2 Riemann matrix
o generates exactly 6 KdV solutions of genus 2, corresponding to the 6 roots of
P (uu/u136) = 0. The solutions may or may not be realt This identification
is due to Dubrovin (1981). Our interest in the present paper is in

two~dimensional waves, 80 we will systematically neglect these one-dimensional
KdV solutions.

(111) Suppose WiVo ¥ uovy. Then

JI a0y A dop = (v - wuy) ffax A gy (4.15)

represents a non-zero area-element in the (x,y)- plane. For any fixed
(i&, 5 ), a period parallelogram of © ( 1 ¢2;B) has as its vertices four
points defined by

(01- 02) '(;1.;2)'(;1421!.;2) ,(;1-0211,;20217) '( ;1,;202" ). ;':'

The area, A, of this parallelogram is given by
/ 2n /21r ) 4 ot
/\ - - "~-"1

o ° "1 02 (U1V2 U2\)1 ) //dA. o
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so that

2 (2m"
(u1V2 - u2\)1 ) = AZ . (u-16)

It follows that (4.13¢c) can be interpreted as specifying the area of the
period parallelogram of each KP solution. As one might guess, this area is
independent of rotations (2.7), but depends on scaling (2.8).

(iv) If one seeks a "nonlinear dispersion relation" for these waves of
genus 2, it is given by (4.13a,b). These two relations are the generalization
to genus 2 of (3.10). ¥, and ¥, are independent of either of the symmetries in

(2.7) or (2.8). They depend only on B and on (“u/l‘1)° They determine the wave
speeds. ’

(v) Suppose u;v, ¥ uyv,. Then at any t, ¢, = constant and ¢, = constant
intersect transversely at a unique point (x(t). y(t)). As t changes, this
point moves in the (x,y)-plane with a constant speed given by

dx _ V%2 T Vo

(4.172)
dt wyvz T MV

gy, X% W72 (4.17b)

dt  myvp T HpY
where the parameters are determined by (4.13). In fact, every point in the
wave pattern moves with this same speed. The entire wave pattern is stationary
in a coordinate system that translates uniformly with a velocity given by
(4.17). Every KP solution of genus 2 with ujv, # uyv; 1is stationary in a
coordinate system appropriate to that wave, Jjust as every cnoidal wave is

stationary in an appropriately translating, one-dimensional coordinate system.
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For completeness, we now summarize a different description of these KP
solutions of genus 2, in terms of the underlying algebraic geometry. More
details are given by Dubrovin (1981). Every indecomposable 2x2 Riemannlmatrix
(real or not) corresponds to a coinpact Riemann surface of genus 2. This
complex surface is a hyperelliptic curve, defined by an equation of the form

w =P (Z:5 or wl=P(Z;6), (4.18)

where P (Z; n) is a polynomial of degree n. The surface is topologically
equivalent to a sphere with two handles. 'Given such a surface, there is a
well-defined procedure to generate a Riema‘nn matrix on the Riemann surface.
Moreover, given a surface and a fixed reference point on it, there is é
mapping (the Abel mapping) from each point on the Riemann surface to a point
on a complex 2-torus, called the Jacobi variety. This torus is coordinatized
by two independent complex variables. For exampie, if we allowed ¢ and ¢, in
(4.1) to take on complex values, triey would coordinatize the torus. Each of
theée complex variables has two complex periods, and at most one reai period.

The inverse problem may be stated as follows. Given a Riemann matrix, B,
did it come from a Riemann surface? If so, fromAwhich one? For genus 2, the
solution as follows: PB corresponds to a Riemann surface of genus 2 if and
only if P is indecomposable. Here is how to construct the curve (4.18)
explicitly, if B is indecomposable. Construct a theta function as in (H;S).
and use (2.8) to scale y; = 1. Then (4.13c) has the form (4.18), and defines
the hyperelliptic curve. Poiht.s on the Riemann surface are identified by the
complex variable (wy/uq). This surface has 6 branch points (called
Weierstrass points), defined by P (Z; 6) = 0. These 6 points represent the
6 KdV solutions discussed above.

Every KP solution of genus 2 has eight free parameters: (vb,d,A) in
(4.6), and (uy, My vyu 9100 9p0) In (4.1). Then (v, wy, wp) in (M.j) are
determined by (4.13). Of the eight parameters, ¢1g and ¢, affect neither the
dynamics nor the algebraic geometry. Of the remaining six, we may always

26

-——

PR ST

\
L.

¢ e
AN U
Pyt e , e

‘..'
i .

o el T .
ch A et ivatan acliaeazhioact




T ——— - n g g SR ey B T T T o P oW v R Y v Y

choose

T4
i

Y = 1 and vy = o ,

by using (2.7) and (2.8). Thus each KP solution of genus 2 has just four
parameters that cannot be changed by a Lie point-symmetry of (1 8). Those are el
(b,d,)), which determine the underlying Riemann surface, and (“2/"1)' which o
determines the fixed reference point on that surrace.
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4.3 A goliton representation .*.j
By using twice the Poisson sum formula (3.7), one easily shows the J
equivalence of the following three representations: :f:::::_‘
2 _j
d mz
©( ¢:05:B) = Z exp tim ‘u} * -
. m, ]
i
-4
2 e ! 2 ;
m1 exp E b (ml + A mz) + 4 (m«' + A m2) 01 }. (4.7) -
. . . .. 4

. 21 \1/2 2 %\ 2 L
e(ﬁnOZ- B)' (__b') Z exP{g ('n? + '2—) }’ ”

ny -
Z d n3 L
—  exp Tt imp (e -2 md) ¢, (4.19a) -
2 . [
2 AT Sy
o (ot ﬁ)'@w;“"{? (m %) } S
2 by 2
; exp{a (w(nz- An1)+—2—) }. (4.19p)
2 .
where all sums are taken over (-=,»), It is numerically efficient to use :'
(4.7) 1f both b and d are large (and negative), to use (4.19a) if d is large .
with b small, and to use (4.19b) if both b and d are small. (The other
possibility, b large with d small, is excluded by (4.6).) Note from (4.19b) v
that if (b, d, A, ¢;, ¢,) are all real, then © is the sum of positive terms. L
Therefore © never vanishes, and the associated KP solution is real and :E:::
bounded. The corresponding formulae for the Ud-component vector of theta :::.\,:
constants are: I
28 j::.j
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(4.10)

.2 Z:;? exp {Q;i)z}.cos {21rn1 (p? +a(my e pz))}].

(4.20a)
- (™4 )2
o [Pl = L 2 exp § —' = 2min,p .
(ba ) 1/2 'ny ™
n, = An 2
2 exp {nz (—2——1) - 21rin2p2} (4.20b)
n, d

We now propose a soliton interpretation of the KP solutions of genus 2.
a) These solutions can be viewed as a doubly periodic array of
interacting solitons. This description becomes exact in the limit b+o, d-o.

b) Away from the regions of interaction, the crests of the individual
solitons lie along ¢3=const and ¢y=const, as defined in (ll.‘ﬂ)-' (within a
region of interaction, of course, individual solitons cannot even be defined
unambiguously.) Thus the edges of the period parallelogram lie along ¢y =const.
and 02-const.; but the wave crests ordinarily do not. According to (4.11),
therefore, A and X determine the angles of rotation of the wave crests from
the directions of ©periodicity. This is a direct geometric-dynamical
interpretation of the off-diagonal term in the Riemann matrix: it determines
how strongly the waves of the two families (¢3 and ¢,) affect each other.
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c) A given wave crest experiences a phase shift from each of its
interactions with waves of the other family. The strength of the phase shift
is proportional by A (or X).

The soliton interpretation can be proved in the limit b+0, d+0, so we
consider that case first. Note that (4.19b) can be written as

! ¢

(ba) /2 n,

2

: 2 2 %\ 2
.'.‘ ; exp{-a (wn2 + - - A (nn? + -2—)) } (M.21)

In the limit of b+0, d+0 and in a neighborhood of (¢1 - Wy = %), the four

terms in (4.21) corresponding to (n;= -1, 0), (n,= =1, 0) dominate. Retaining
only those terms in (4.21) yields
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Substituting this into (4.3) yields the approximate KP solution
£ xy,t) - 233 111[1 + exp ny + exp ny + exp(n3+ ny + A)]

I* 2u2 2 (us = Ay )2
~ 1 2 1
- + e ¢ 5 ’ (4.23)

where

an 2n
ﬂu"?(¢2’1¢1'7)"?(0u'“) ’
2 2
“3'2“(%*%)(¢1'ﬂ)+2h ¢,/d --21:(-16-+-Ad—)(o3-t),
2
Yu-a
e

and we have used (4.6) and (4.11). The parameters in (4.23) are constrained by
(4.13), which in this limit becomes

2 2
c3 " 3 pg . (21w3 (‘;* -‘?)) , (4.24)

ZﬂUu 2
Cu'39§ + (_d ) ’

2wy, 2nu3(bx2 s+l ]2 2
(un?-x) . q /) bd -( b - °3)
exp

e —

p
2
2mu,) [27u3(bA +d)) 2 2
()52
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Note that the wave .speeds remain finite in this limit only if (uy/d) remains
finite as d+0, and if (yy/b) remains finite as b+0. But (4.23) and (4.24)
represent an exact solution of (1.8)! They describe two solitons. mteracting
obliquely on a depressed mean level (cf. Satsuma (1976) or Ablowitz & Segur
1981, p. 189). Away from the region or' 1nteract16n, the crests of the
individﬁal solitons 1lie along ¢3 = constant and ¢, = constant. The phase
shift of the ¢, - soliton due to the interaction is obtained from (4.23) by
letting 3+ 2= holding ¢, fixed. The result is '

b ooy = 2m, 843 = 27 . (4.25)

The largest neighborhood of (¢ = %; ¢, = ¥) in which the four terms in
(4.22) dominate is ©precisely a “period parallelogram centered at
(01 -% ¢ = 1) Moreover, in the corresponding period parallelogram
centered at (¢1 = (2 Ny ¢ 1)1. ¢ = (2N, + 1) %), there are in (4.21) exactly
four dominant terms, indexed by (ny + N; = - ‘I. 0)y, (ny, + N, = -1. 0). Thus
the entire series in (4.21) represents a bi-periodic repetition or a 2-soliton
solution of (1.8). o

To summarize, we have now established the validity of the
soliton-iﬁterpretation given above in the limit b + 0, d + 0. Figure 2a shows
a two~soliton solution of (1.8). Figure 2b shows a genus 2 solution with
(b =-1, bA° 4
represehts a bi-periodic extension of the two soliton solution is evident.

+d=-1). The sense in which the solution of genus 2

What happens if b and d are not small? Given any b,d satisfying (4.6),
then in a period parallelogram centered at (¢1 =% ¢ = %), the four terms in
(4.22) are bigger than any of the others in (4.21), but they are not
necessarily dominant in an asymptotic sense. Eveh So, there is a practical
sense in which the wave crests still 'lie along ¢3 = constant and
¢, = constant, provided this statement is interpreted correctly. This
assertion is corroborated in Figure 3, which shows some typical KP sdlutions
of genus 2 outside the soliton 1limit. Each wave pattern consists of a
bi-periodic array of peaks, connected to each other in two directions by
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ridges. The peaks are the interaction regions, where the two wave amplitudes
"add".- If those peaks were well separated as in Figure 2, the ridges would
becomé the wave crests of the individual solitons. In Figure 3 the peaks are
not well separated, and the “individual wave crests"' are simply the lines of
steepest descent and ascent across the saddles. We have sketched lines of
constant 03 and constant ¢, in Figures 2c,3d,and 33 to show that they identify
the wave crests (f.e., the 1lines of steepest ascent in the saddles) in the
general case. o

Do the wave crests still lie along 03 = constant 'and ¢y = constant, even
if b,d + - «?

(1) Suppose d + - », with b, A finite. Then A+0 from (4.11), so
03 *> 01.. In this limit, therefore, the asseriion is that the crests lle along
¢ - constant and ¢y = constant. Its validity for d + - @ follows easily from
(4.19a); 1t is shown in Figtfre 1, which is actually a wave of genus 2 with

b"3,d"12.l'0.3. u1-u2.0050

(11) Suppose b » - = and d + - =, Then the appropriate representation of
® is (4.7). We will show in §4.4 that the limit b+ - =, d+ - = {s
nondegenebaté only if A » 0 as well. in this limit, therefore, A + 0, ; +0
and the wave crests lie along the directions of periodicity.

In summary, we assert that the wave crests always lie along ¢3 = constant
and ¢, = constant. We have proved this assertion in certain limiting cases,
and have offered supporting evidence in other cases.

Now we turn to point (c) above. We have already shown that in the limit
b+0, d+ 0, the phase shifts in each period of the lines 03 = constant and
¢, = constant are given by (4.25). 1In fact, the validity of (4.25) does not
rely on any special limits; it is a consequence of elementary geometry. 1In
Appendix A, we prove the following theorem. Let ¢, and ¢, be independent real
variables. For fixed A and A (0 s A2 5 A2 5 1/4), define ¢3 and ¢, by (4.11)
on 0 s $ < 27, 0 5 ¢, < 2w, and by periodic eitension outside this rectangié.
Then once each period, 03 = constant and ¢, = constant experience
discontinuous shifts whose size and direction are given by (4.25).
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4.4 Limits and asymptotic formulae

The KP solutions of genus 2 generalize and unify several simple models of
waves in shallow waters, including one-dimensional cnoidal waves, obliquelv
superposed infinitesimal waves (i.e., Fourier modes), and 2-soliton formulae.
We show next how these previousiy known results emérge from the KP solutions
of genus 2 in various limits. We also develop asymptotic formulae that will be
useful in §5. .

(a) Limit of one weak wave: d + - ®

Ifd+ -+ 4in (4.7), then

e -»I:vexp {1 st 0|} *

{

2

1
2

+ed/2 exp(i Ou) Zm exp b(m+l)2*1(m*X) 01}+ (%)

+ ofe), (4.27)
where (*) denotes complex conjugate. Comparing this with (3.2) shows that at
leading order, (4.27) represents a one-dimensional cnoidal wave with phase
variable ¢;. There is no phase shift of the cnoidal wave at this order because
the second wave is too weak. The next order describes a weak perturbation of

d/z) This perturbation solves the

the cnoidal wave, with an amblitude O(e
equation obtained by linearizing (1.8) about a cnoidal wave. We will refer to
these weak perturbations as "linear waves". An example of such a perturbed

cnoidal wave is shown in Figure 3a.
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The limiting form of (4.12) depends on whether or not b remains finite as

A d + ~», Suppose b remains 'finite. Then for either py =0 or py = 1/2 in
| (4.10), ' ' '

5[213- ; exp{b(m*p,) 2}*

I edZ[exp{b(m¢p1+x)2}+exp{b(n0p1-x)2}]

m
+ 0 ( eud ) ,
r - p
w e[:}:]-ed/"[z exp{b(m+p, + 1/2)2}
, m k
+ exp{b (m+py - A/2) 2} +0(e29) ]
L
When these limiting forms are substitute into (4.12), the two equations
with Py = 0 become
‘ - P ~ |P - P
i D 91 [01] - (H1 w, + 3 \)12) 3b 91 [01] + ‘l\l;l ag 91 [01] - 0. (u.28)
.. i o
- where 6 [o‘]-z exv{b(m*m)z}-
~ ) m

These are exactly the equations one obtains for a cnoidal wave. If D ‘is
:_': eliminated from (4.28), the resulting equation is equivalent to (3.10). The
other two equatfons in (4.12), with p, = 1/2, determine the speed and

i orientation of the linear perturbation.
- (b) The small amplitude limit: d + - ®, b » - =, My = o (1)
- In this limit, (4.7) becomes
J :
: @~14+2 > +2 L(oa2 . q) N
v expiz | ©oS & exp | 3 cos ¢, =
- =
] e
X “od
. e
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corresponding to an approximate KP solution of

R 2 b 2 1 2
. r{x,y.t)~ 24 exp{Z} cos ¢ + 2u5 exp{2<bl +d)}cos ¢ »
(4.29)
I where ¢, and ¢, are defined by (4.1). Clearly (4.29) represents a linear
superposition of two Fourier modes of small amplitude, and one expects (4.13)
to produce the dispersion relation of the linearized problem in this limit.
_ This expectation is correct. One shows that in this limit, (4.13) becomes
- .
o y
’ u1 Uj + 3 V12 - u, » (14.303)
' 2 4
L o wp + 3 vyl o=y, (4.300)
- 2 2
- By ~ M *ieg -0
i exp(br) = ( ! 2)2 ( ! 2) 5 (4.30¢)
wmo+up)? ¢ (e - 02)

where we have used (4.1b). Because b + - = with yy, u, finite, (4.30c) can be
p satisfied only if A+ 0 .as well. Then one may prescribe two Fourier modes in
. (4.29) arbitrarily, and (4.30c) determines (bi). Because A + 0, the wave
.‘ crests and the lines of periodicity coalesce in this limit.

_ For use in 85, we also give the next corrections to (4.30a,b). As
» b+-9o, d=+ - o with (bA) finite,

” ¢, - 3 p,?

6
. —V1 =

~ -1+ 2k exp (b) - 12 exp (DA% + )« w/p,®
¥

2

U22

¢ - 30

- -1+ 24 exp (DA% + d) - 12 exp (b)+ M/0 i
(4.31) :

P
RN
’ ':' "
/P ¢
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where

M= l-l12 Ngz [(H1 + Mz)z exp(bi) *(U1 - llz)z exp(-br) -2 (H12 + u22 )] .

(¢) Limit of one soliton plus perturbation: d + - ®, b + 0

Consider (4.19a) in the limit b + 0, d » - «, and in a neighborhood of
¢ =~ 7

2
e-(%)”z exp {:—:’} 1 + exp {2—':- (n— ¢1)} + (4.32)
+ 2 exp(%)(cos by + exp {%‘(n- ¢1)}cos (4’11 +2wx))

where ¢; and ¢, are defined in (4.1), (4.11). The parameters of this solution

satisfy
2wy, 2mw, 2mv, )2 2mu, \ 4 3b
(-b')( = )+ 3( = + re 1+—-5 ~0 (4.33a)

Hy wy ¢ 3\)% - uﬂ ~0 (4.33b) .

2ru, \ 2 2mus \ 2 2y ,:':'.:
( -b1) pﬁ[( -b1) *21-!4 ( _bl)cot(nA)- uuz] . (4.33¢) .

At leading order in exp (d/2) , (4.32) gives a one-dimensional soliton as
b + 0. Equation (4.33a) shows that the speed of this soliton remains finite as

.- "0
ca a8 o

0
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b+ 0 only if u) + O so that (u,/b) remains finite. At second order, (4.33b)
shows that the speed of the linear wave is unaffected by the presence of the
soliton of leading order. The next order corrections to (4.33a,b) are

- 2,2
Ly T30 _(211)2 1+ 3
: 21 3
| w2 b 2

+ 24 exp(d) [( 1 - cos (2nx)) (1 - 22) z2 + 2 sin (2nr) - 23] .
(4.34)

cu = 3912

U12

I ~ =1 + 24 exp(4d) ’(%22)2-2 .

-buy
- 21'”]1

where Z

(d) Limit of two solitons: b+ 0, d + 0

This 1imit was already discussed in § 4.3, and from quite a different
viewpoint by McKean (1979). The higher order corrections to the wave speeds
are

2
-y, - ¢3 " 3°f3 2w(bA2+d))2+12 M\2 o, 12 (M2

Note that both V3 and ¥, are singular in this limit, although the wave speeds

are not.
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5. Using wave measurements to calibrate the model

The KP solutions of genus 2 have eight free parameters: b, 4, d in
(4.6), and Ui Ups Vis $1gs $5g in (4.1). In order to use these solutions as
models of two-dimensional periodic waves in shallow water, one must be able to
infer these parameters from measurements of the water wave. The purpose of
this section is to show how to infer these parameters from tw6 different kinds
of wave measurements. At this time, we have not proven rigorously the
validity of every step'or our algorithms, but we have identified the major
unproven points in five conjectures.

Certainly the KP solutions of genus 2 cannot describe all possible waves
in shallow water. Every two-dimensional KP solution of genus 2 that is
generated by a reai Riemann matrix, as discussed in §4, necessarily has the
following four properties, so the water waves that they model should also have
these properties.

(1) The solution is real-valued and bounded, for all real (x, y, t).

(11) It is spatially periodic in two independent directions, which we may
identify with ¢; and ¢, in (4.1). If ¢; and ¢, are not collinear, then
Uy, # uovy. We call a solution two-dimensional 1f uyvy # uyvy.

(1ii) There is a uniformly translating coordinate system in which the entire
two-dimensional wave pattern is stationary.

(iv) The common features of two—dimensioﬁal KP solutions of genus 2 can be
inferred from the examples shown in Figures 2 and 3. Within each period
parallelogram, there 1s a single wave peak. It occhrs in a region of
interaction of two intersecting "wave crest's". The crests connect adjacent
peaks, and may appear as ridges of constant wave' amplitude, as in Figure 2, or
merely as lines of steepest descent and ascent between neighboring peaks, as
in Figure 3. Ordinarily, each wave crest experiences a phase shift 1in

crossing a region of interaction.
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CONJECTURE A: Out of all possible KP solutions, the only ones that are

(1) real-valued, (ii) genuinely two-dimensional, and (iii) stationary in some
uniformly translating coordinate system are those in the form (1.9), with
genus 2.

The first step in comparing water wave data to KP solutions is to
transform the physical data into KP data in the form f(x,y,t). This is
accomplished via (2.4), with F = 0 in (2.4b), once we have decided on:
(i) the magnitude of €e; and (ii) the ‘direction of the x-axis {in the
horizontal plane. A reasonable definition of ¢ is given below (2.3). A more
refined definitilon is unnecessary, because adjustments of e caﬁ be absorbed
into 8 in (2.8).

The direction of the y-axis should be approximately the principal
direction of wave propagation. Small readjustments of this direction can be
absorbed into a in (2.7), but one can expect significant errors 1if (2.5) is
used to model water waves propagating in a direction much different rrbm the
x-direction. 1In the remainder of this section, we assume that these choices
already ha\)e been made, and that the water wave data already have been

transformed via (2.4) into KP data.

5.1 Wavelength and velocity data

As discussed in §3, a cnoidal wave is determined to within a translation
by specifying its wavelength and speed of propagation. The KP solutions of
genus 2 that are of interest here are two-dimensionai generalizations of
cnoidal waves, sSo one expects that a similar procedure might succeed here as
well.

Here is a precise statement of the mathematical problem. Let f(x,y,t)
represent a particular two-dimensional KP solution of genus 2.v Then £ has the
form (4.8), and is specified completely by the eight free parameters in (4.1)
and (4.6). 1Identify eight measurements of f(x,y,t) which are sufficient to
determine these parameters, and give an explicit algorithm to find the

parameters from the measurements.
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The practical problem differs from this in two respects.

(1) Instead of f(x,y,t), a two-dimensional wave in shallow water is
observed. The wave pattern has the four properties listed above that are
common t6 all two-dimensional KP solutions of genus 2, and we use Conjecture A
to assert that the water wave can be represented by a two-dimensional KP
solution of genus 2.
(ii) We do not nécessarily require that the eight free parameters be
determined from only eight measurements. 1In practice it is often convenient
to take one or two extra measurements and to minimize the effect of
measurement errors.

In any case, how does one find experimentally the free parameters of a
two-dimensional KP solution of genus 2? The method proposed here has eight
fundamental steps.

(1) Find a period parallelogram at a fixed time, t.

This step is based on a procedure due to Arnol'd (1978, p.276). Start
with any point, (x,y,t). (From here to step(5), t remains fixed' at ?. and we
shall suppress it.) Because f(x,y) is a two-dimensional, bi-periodic function,
there is an infihite array of points in the plane at which f is periodic to
£(x,y); 1i.e., at which f and all of its derivatives match those at (X,y).
This colle'ctiion of points is called a period lattice (relative to (;.')7));
Pick any point in this period lattice other than (x,y). Denote the liné
through these two points by ;1 = const. Out of all points on this line that
are in the period lattice, denote one closest (but not equal) to (X,y) by
(xy,¥4).

Out of all points off of this line that are in the period iattice, denote
one closest to the line by (x,,y,). The two line segments connecting (x,y) to
(xq,y4) and (x,y) to (x55¥5), are two sides of a parallelogram with the
following properties.

(1) The paralleloéram contains exactly four points of the period lattice.
These four points lie at its vertices. (For a proof, see Arnol'd, 1978).
(1i) The parallelogram is a period ﬁarallelogram of f; 1.e., f(x;y) may be
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defined in the entire plane by periodically extending i;he function defined on
the parallelogram.
(ii1) The parallnelogram cannot be replaced by any smaller parallelogram
without losing information about f(x,y). L
(iv) The enclosed area of this par'allélogram can be measured directly, and
it provides information about the parameters in question, through (4.16). The
method described here does not use this area explicitly, but it can be uéed as
a check on the results obtained.
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Define ;1(3(.)') as in (4.1), and choose (:1.;1) so that: (1) ;'1 = 0 along ,
one side of ‘the period parallelogram; (ii) ?1 = 2% along the opposite side. -
Define ;z(x.y) in the same way using the other two sides of the parallelogram. |

(2) Find the wave crests

Within each period parallelogram, f(x,y) has one complete region of
interaction, containing the maximum of f(x,y). As demonstrated in 5§ 4, each :
region of interaction is connected in two direcfions (related to 03 and ¢y in "-“:“:
(4.11)) by saddles; see especially Figures 3¢,3d,3f,38. We now define a -
"wa\)e crest" to be a straight line segment along a saddle connecting two
adjacent regions of interaction. These are wave crests in the sense that
along any other line that 1nterse¢ts one of these line segments transversely,
f(x,y) attains a local maximum at the wave crest. In this paper, "wave crest" )

always refers to a saddle between two peaks, and'not the peak itself.

-

Emanating from every region of interaction are two pairs of parallel wave
crests. We will eventually associate the pair possessing the larger wave .
amplit\ides at their saddles with ¢3. and the pair possessing the smaller wave S
amplitudes with ¢y.

CONJECTURE B: The wave crests in each period parallelogram are defined by i
¢3 = const. and ¢, = const., where ¢3 and ¢, are defined by (4.11).

(3) Find a basic period parallelogram
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The period parallelogram found in step (1) is not unique.‘ Figure 5 shows

two dissimilar period parallelograms on the same period latticf. ar:d enclosing
the same area. Denote the sides of the two parallelograms ¢y, ¢, = const,
and by ;1. ;2 = const, respectively, as shown in Figure Sf The two sets of
coordinates in Figure 5 are related by

L4 O
4 R
POPL TR DL

J 12 g o
L) 0 1 ;2 ’
'.- (5.1) - .
as the reader may verify. S

More generally, let (?1. ?2) = const denote the sides of any other
period parallelogram on this same period lattice, that encloses the same area

F as that of (;1. ;2 ) These coordinates are related by .
[ * ¢
- - u -
2 7] '—
(5.2) e
’ oL
where Y is an integer, 2x2, unimodular matrix (i.e., integer elements and -

determinant = t+ 1). These are precisely the t.ransférmations used to reduce a
real Riemann matrix to its basic form, because the symplectic transformations
among equivalent Riemann matrices correspond precisely to the transformations

among period parallelograms with the same enclosed area on a fixed period
lattice.

The two kinds of transformations relate to theta functions as follows. A
real 2x2 Rjemann matrix, plus a particular period parallelogram on a lattice.
determines a theta function, as in (4.3). Suppose the Riemann matrix is T
transformed to an equivalent one by a aympiectlc transformation. To keep the
same theta function, one must also transform the period paralleiogram by the
corresponding integer unimodular matrix, as in (5.2). Thus, for a given theta
function, each equivalent Riemann matrix corrésp&nds to its own pericd _’..;‘
parallelogram on a fixed period lattice. (Here and in what follows "period -
parallelogram" refers to both the single fbur-sided figure and to the tiling
of the entire plane by this figure.)

------
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Recall that a real, indecomposable, 2x2 Riemann matrix is equivalent to a
basic Riemann matrix, for which

'
I

v
.
..
L A

PR
Paran

0<% sl s% . (5.3)

Corresponding to the ©basic Riemann matrix is a particular period :
parallelogram, which we also call basic. Here is how to identify it. Define

#1(x,y) and ¢,(x,y) as in (4.1), so that ¢,(x,y)/2x takes on seduential )

integer values on two parallel sides of theé parallelogram, and ¢,(x,y)/2n ‘

takes on sequential integer values on the other two sides. The basic period Lo

parallelogram is identified by two properties. ' '%i

(1) It is related to the parallelogram in Step (?) by an integer unimodular ij

transformationf In particular, it encloses the same area as the parallelogram .

in step (1). o

(ii) The ﬁave crests are related to the lines of periodici.r of the basic Eff

parallelogram by :;i

i -

¢3 (X,¥) = ¢ (x,¥) = A ¢ (%) (5.4) A_..‘;

6 (Xu¥) = 6y (x,3) = 2 6y (x,y) 2

' sy

where (2, ;) satisfy (5.3) and _Tj

AX>0. (5.5)

We show in Appendix B that the basic period parallelogram is uniquely
defined by these two properties. Here are some other properties, which follow
from these and from the results in §4. 2
(111) If ¢, is increased by 2w, holding ¢, fixed, ¢; changes by 2m. -

Conversely, if ¢, is increased by 2w, holding ¢; fixed, ¢3 changes by =
(- 21‘ ‘i)' ::t'.-_

(iv) The wave crests (¢3) associated with the larger amplitude waves
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experience a smaller phase shift (21:). while the smaller amplitude waves feel
a larger phase shift (2wxA) as a result of their interaction.
(v) Given a period parallelogram, the wave crests emanafing from a vertex
are constrained by (5.3) to lie in certain two-dimensional cones.
(vi) Ir ¢3 lies to the left of ¢;» then ¢, lies to the right of ¢, because

of (5. 5) The interaction does not represent a common rotation of both wave
crests.

(4) Measure the wave numbers

At this point, we have identified the basic period parallelogram, and
have located the two sets of wave crests within the parallelogram. Now we may
measure the wave numbers (u1.u2.v1.v2) directly. We also measure A directly.

(1) 03 = const on the wave crests with the larger amplitude waves, and uith
the smaller deviation from the nearest line of periodicity.

(i11) ¢, = const on the two sides of the parallelogram ﬁmst nearly aligned
with ¢3 = const.
(111) The straight lines along these two sides are defined by

MX * VY * 60 = O, MX * vy 9yp =27, (5.6)

so0 that (u1.v1) can be found by direct measurement.

(iv) From the other two sides of the parallelogrém. one also finds (uy,v5)
by direct measuremeht. The area of the parallelogram, of course, then
satisfies (4.16). '

( v) A can be obtained either by measuring an angle and using (5.4), or by
measuring the phase shift of the ¢y-crests and using (4. 25) -

(vi) One obtains 1 in a similar way. From (4. 11b).

a/b = Az - A2 . (5.7)
We use this information simply as a check on (d/b), but it is not necessary to

do so.
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(5) Measure the wave speeds

Because the wave pattern is a two-dimensional KP solution of genus 2, it
is stationary in a uniformly translating coordinate system. Measure this
speed of translation. Then (4.17) determines (wq,wp).

(6) Deduce the Riemann matrix

Given any basic Riemann matrix (b,d,A), and any real (uy/uq) satisfying
(4.13d), then (4.13a,b) determine Yy,¥y. Suppose (Y,,¥,) were generated in
this way from some (b,d,A, (“H/"1)) '

CONJECTURE C: Given (A, (uy/uq), ¥4,¥y), (4.13a,b) can be inverted to find
(b,d) uniquely. ) '

We have not proven this assertion, but we offer the following evidence in
support of it.

(1) The validity of the corresponding statement for genus 1 can be proven.
(11) We have tested this conjecture numerically by first generating (V,.Yu)
from a particular Riemann matrix, then using (4.13a,b) in a simple Newton-type
root-finder to solve for (b,d), given (11.12.1 uy/uy). Our experience has
been that the algorithm always converges quickly to the correct values, even

if our starting values were chosen poorly.

Returning now to our two-dimensional KP solution of genus 2, in effect we :?j
have already measured (¥;,¥4,A,(uy/yy)). Then it follows from Conjecture C ffjf
that (b,d) are determined from (4.13a,b). Reasonably accurate starting values -;3:

can be obtained from (4.31), (“-345 and (4.35).

Conjecture C is closely related to another conjecture that we never use
explicitly, but which is implicit in this entire algorithm.

3%
R

"'l

CONJECTURE D: Every bounded real-valued KP solution of the form (1.9) is
generated by a real-valued Riemann matrix. T
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(7) Check Consistency

(1) The ratio (b/d) has been determined independently in steps (4) and (6).
These must agree. |
(11) Both sides of (4.13c) have been determined independently. These must
also agree. B '

(8) Measure the phase constants

If desired, $100 %20 in (4.1) can be measured for a particular coordinate
system. These have no dynamic significance. In any case, this completes the
algorithm.

5.2 1Initial Data

A second way to specify these waves is with initial data: to specify the
elevation of the water surface everywhere at some fixed time (which we call
t = 0). Suppose f(x,y,0) is genuinely two-dimensional, is periodic in two
independent horizontal directions, and is given completely in one period
parallelogram. We must answer two questions: (i) Is this the initial data
of a KP soldtion of genus 2? (ii) If so, how does the wave evolve in time?
This method of solution was first given by Segur, Finkel & Philander (1983).

Is this the initial data of a two-dimensional KP solution of genus 2?
Conjecture A is not effective for initial data, because we have no information
about the time evolution of the solution. Instead, we assume $hat f(x,y,0)
has the form (4.8) and derive necessar'y conditions that f must satisfy in
order to be initiél data of a two-~dimensional KP solution of genus 2.

For any function satisfying (4.8) and (4.1),

ax - u131 + u232. 8y = \)131 + \)232. (5.8)

3t = (01 31 + (02323

where aJ - =1,2.
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Now integrate f(x,y,0, over a period parallelogram (with area A), using
(4.16):
1

2n 2n
/o ¢4 /o doy (w3 * ud) (3tne) =0

This requirement is closely related to the normalization in (2.3).

A second constraint on the initial data is obtained by multiplying (1.8)

by (a,‘r). and integrating over a period parallelogram. Most of the integrated
terms vanish identically, and we are left with

//dA- (3f(x,y,0)) 3 = 0. (5.10)
Similarly, multiplying (1.8) by ayf and integrating over a period
parallelogram yields
2
//dA- ((ar(xy,0) )2 - (ayr(x.y,o)) - 0. (5.11)

It is clear that an infinite sequence of necessary constraints on the initial
data can be obtained in this way. It is also clear that no finite number of
them will be sufficient to guarantee that f(x,y,0) is the initial data of a KP
solution of genus 2. Conditions which are both necessary and sufficient are

not known at this time.

Consider now the second question. Suppose f(x,y,0) is two-dimensional, is

periodic in two independent diréctions. and is given on a period

parallelogram. Further, suppose that f(x,y,0) is known to be the initial data
of a KP solution of genus 2. Find f(x,y,t).

Because f(x,y,0) defines initial data for a two-dimensional KP solution
of genus 2, the initial wave pattern simply translates with some uniform
the initial data in a

period parallelogram plus the velocity of translation determine the solution

velocity for all time. Once this velocity is known,

for all time. There is no need to find the underlying Riemann matrix in this
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case.

I The velocity of translation can be found from (4.17) if ( wy,wp)in (4.1)
ﬁ are known. One equation for ( w;,w,) can be found by multiplying (1.8) by f,
Q and multiplying over a period parallelogram. The result is

' 2 _ 2 2

i //dA (eafy » 6202 - 12, ¢ 362 ) = o (5.12)

It follows from (5.1) that

(wive = uav) fy = ((wgvp = wpvy) Ty * (wup = ww) 1y (5.13)
7: Moreover, ( Uy oMo Vg eVs )all can be measured directly from the given initial
g data, and h1v2 #'u2v1 because the initial data s two-dimensional.
! Substituting (5.13) into (5.12) yields
dn ((vary = wafefy) < wy ¢ ffan (wtery - vt ) - w (5.14)
.
+ (v = uaw) //dA (6re2 - £2, + 362) - o.
e The integrals in (5.14) all can be evaluated at t = 0, so (5.14) is an
. algebraic equation for (w1 s “‘2) .

A second equation for ( w1.w2) can be found easily if ( "2/"1) is
rational, which we now assumef'Because ( "2/"1) can be measured from the
initial data only to a finite accuracy, this assumption makes no practical
limitations. Its consequence is that f(x,y,0) is necessarily strictly periodic
in x (holdiﬁg y fixed). Denote this x-period by L. Because f(x,y,0) has the
form (4.8) by assumptidn. then for all (xo.y ).

L
‘,; dx f(x + x5, ¥, 0) = 0. (5.15)

-
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Define

L
i § (x.yixy)) = L? ./; ds < of (x + x5 + 8,y,0) (5.16)

§ is the unique anti-derivative of f with the same periodicity as f, and with
zero mean in x; {. e.. § also satisfies (5. 15) and £ = 9, §. The corresponding

. anti-derivative of ‘ may be defined in a slmllar way.

Now wmultiply (1 .8) by that anti-derivative of { ({. -e., the second
integral of f) with the same periodicity as § and f and integrate over a

| L A

period parallelogram. The final result is

Shan (vaf® - uothy ) oy offan (mthy - we?)e w, (5.17)

 (woe ) S (- 43) - o

i The integrals may be evaluated at t = 0, so (5. 1‘6) and (5. 17) are two
' linear algebraic equations for ( Wyewp ) o If they are linearly independent..
their common solution defines ( wy .u'z) , and it completes the specification of

the given KP solution of genus 2.

. CONJECTURE E: (5.14) and (5.17) are linearly independent, and they define
(wy, wy) uniquely.

It 1s easy to show that (5.14) and (5.17) are 1linearly independent in the
small amplitude limit (d + -~ =, b + -~ 45. but we have not established this

4

property in general. In the cases we have tested numerically, (5.14) and
(5.17) are independent, and their common solution agrees with that in (4.13).
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Appendix A

Theorem: Let ¢ and $ be 1independent real variables. For fixed A and ;
(0532 512 5 174), define ¢3 and ¢ by (4.11) on 0 5 ¢; < 27, 0 5 ¢, < 23,
and by periodic extension outside this reciéﬁgle. Then once each period
¢3 = const and ¢, = const experience discontinuon;ls shifts, whose size and

direction are given by (4.25).

Proof: Figure 4 shows a period lattice in ¢; and ¢, with two line segments
of ¢, = const, shifted by A¢y. We must show that A¢, is given by (4.25). Let
(x,y) denote Cartesian variabies. and let ¢ and ¢, be related to (x,&) by
(4.1) at t = 0. Let L denote the normal distance between ¢, and (¢, + 27).

Then
L - Zw( w2 + v22) -1/2 (A.1)

Let £, denote the distance along (¢, = const), between ¢; and (¢ + 2w), as
shown in Figure 4. Their product gives the area of the period parallelogram:

Y2
L, L=A=x (20 : (A.2)
. [uyva = v | :

where we have used (4.16). This determines 2.

The unit normal vector for any of the phase lines
‘J = const, j = 1,2,3,4 has components given by

A = e : 5 (A.3)
a7 T
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The angle (Y) between the two lines, ¢, = const and ¢, = const, is given by

Moky * VoV o
» T
(u§ . vg) 1/2 ( e+ Vi )”2 S

cos Y = 52 . ﬁu =

S0

A2 - 2
y - (“1“2 “2“1) : (Afh)

() (o )

Now the normal distance (ALu) is one side of a right triangle whose hypotenuse
is 21:

2 2

sin Y = 1- cos

2nA
(Nuz * vy

ALu = 21 sin Y = > ) 172

2 )?/2. so0 the distance

But the magnitude of the wave-vector, 2u is ( uﬁ + vy
4Ly corresponds to a phase shift of

This is the desired result. The other half of (4.25) is proved by similar

means.
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Appendix B

Suppose the basic period parallelogram of a fixed wave system is
identified by ¢; = const. and ¢, = const. The wave crests are identified by
¢3 = constf and ¢, = conétt. where ¢3 and‘¢u are defined by (55"). with A and
A satisfying (5.3) and (5.5). We want to show the basic period parallelogram
is the only periéd paralleiogﬁam in which the (fixed) wave crests are related
to the lines of periodicity through relations of the form (5.3)-(5.5).

Let ¢a = const. and °b = const. along the sides of another period

parallelogram. If the two parallelograms enclose the same area, then

¢5» ¢p are related to ¢1» ¢, by an integer, unimodular transformation of the
form |

9 a b $a

(B.1)

In this Appendix, let o, + 1, with o
integers with

m and o, independent. Let (a,b,c,d) be

ad - bc - 01 L] (Boz)
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Substituting (B.1) into (5.4) yields

¢3 a-ic b-1d ¢a
0“ C'Xa d‘lb ‘b 0
(B.3)
There are two choices:
(1) a-ic-az. d-Ab-o3. b-:d-x.c-la-ll; or
(11) c-la=o0y b-A=o03 d-Ab=4A a-i-=A
' For either choice,
AMM>0, 0<A sast | (B.4)

n

We will show that in either case one is forced back to the basic period
parallelogram.

Assume (i1); the analysis for (ii) is similar, and we will not repeat it.

Because Ai >0,
a-o d-o
- C = _2 ’ b= 3 (9.5)
X A ’
. Therefore A=c~-)a-= a[(1-u) - oz]/)t ’
) 0, *+ ; A
so that as —, (B.6)

P
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Pp— P . — o P —— A v
e e LT Y . T Y T v VL . . V. mLa V.V -y TS
Lt s LT Lt T R R T e P

QavENOE
Now |:A|$%. and 1-1321-122%.
It follows from these relations and (B.6) that
1‘025‘% . (B-?)
But a is an integer, so from (B.7) and (B.5),
[
i as 02. C= 0: (808)

Similarly, d = 03, b = 0. Therefore, the transformation in (B.1) becomes

* o O ¢2
¢ 0 o3J\ %/
(B.9)

Any choice of (02.03) leaves the basic period parallelogram intact. This
completes the proof of uniqueness of the basic period parallelogram.
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FIGURE CAPTIONS

Figure 1 . Cnoidal wave solution of KP. In (3.2), b=-=3.; n (3.1),
e 005. Ve = 00215. Wwe - 00325.

Figure 2a. Two soliton solution of KP. In (4.23), nyex¢ by - 49¢t,
ng = x - 4y - 49t, exp (A) = 16/15.

Figure 2b. Genus 2 solution of KP in soliton regime. In (4.6), b= -1,
ba2 ¢ de=-1, 2e0.15 in (K1) py = up = 0.25, v, = = 0.1263, v, = O,
wy = = 0.9681, wy = -~ 0.2695.

Figure 2c. Contour plot of wave shown in Figure 2b. This plot shows clearly
how each wave crest experiences a phase shift from every interaction with
another wave.

Figure 3 . Genus 2 solutions of KP, showing some of the variety of wave forms
avajladble.

Figure 3a. One wave is dominant. b= -2, d =~-3, A« 0.3, y = u = 0.5,
V' - = 0.316". V2 - 0. U] - - 1-227. Uz d 0'0630

Figure 3b. Both wave crests are evident. b= -2.5, d=-3., A=20.3,

Figure 3c. A comparison of the waves here and in Figure 3b shows the effect
of the scaling symmetry in (2.8). Here b= -2.,5, d=~~-3., i =0.3,
U1 - uz L 0.8. V1 - = 1.056. V2 - 0. w1 - - 5.56“. “’2 - = 0.55“9-

Figure 3d. Contour plot of the wave shown in Figure 3c. Here a basic period
parallelogram is shown, along with the wave crests corresponding to 03(--- )
and ¢,(—*—). Note that the wave crests do not lie along the directions of
periodicity.
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Figure 3¢. Contour plot of wave pattern in the small amplitude 1limit.
be~8, d=-8, A =20.1, By o= My =1, vy - - 1.808, vz-O. W, = - 8,820,
“w - 0.9837. In this limit (and only here) the wave crests align with the
directions of periodicity.

Figure 3f. "Typical" genus 2 solution of KP, away from any 1limiting case.
b--". d--306. A.OOS. u1 -u2.1. V1 .-0.71u7' \)2-0. w1 --’0300,
u)z L 0008850

Figure 3g. Contour plot of wave pattern in Figure 3f. The wave crests and
phase shifts are marked.

Figure 4. Period diagram of hypothetical wave pattern, showing 1lines of
periodicity (o, and 02). wave crests and phase shift. The same effects in an
actual wave pattern are shown in Figure 3g.

Figure 5 . A fixed period lattice supports many period parallelograms that

enclose the same area. Two are shown here.
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